
Sabbia: a low-latency design for anonymous
networks

Claudio Agosti1 and Stefano Zanero2

1 Sikurezza.org research group
http://www.sikurezza.org
vecna@sikurezza.org

2 DEI-Politecnico di Milano,
via Ponzio 34/5 - 20133 Milano Italy

zanero@elet.polimi.it

Abstract. We present Sabbia, a novel approach for building a low la-
tency anonymous network. Sabbia is characterized by a simple design
which offers a perfect forward anonimity to internet traffic, using nor-
mal, user-space software. Sabbia is based on natural network concepts
to optimize routing, a steganographic approach for data hiding which
does not heavily impact performance, and uses expert algorithms and
protocol dissection at application layer in order to solve automatically
some well-known security problems.

1 Introduction

The Internet is growing up, from its early stages of experimentation to widespread
and ubiquitous usage. New problems are thus arising due to the different needs
of its different user communities. Since the Internet is becoming an area where
significant amounts of money can be made and lost, information exchange and
free speech, which were the true innovation behind the first age of the net, are
now threatened by information censorship, sometimes openly declared, some-
times more sneaky. Protecting these fundamental rights is the real motivation
behind research into privacy, secrecy and anonymity preserving technologies.

Anonymous networks have been widely studied in the past, and can be di-
vided in a rough taxonomy as follows:

1. High latency anonymous networks, e.g. MixMinion [1] and MixMaster [2],
used for non interactive data block (such as e-mail transfer)

2. Closed anonymous networks, e.g. FreeNet [3]
3. Low latency anonymous networks, used for anonymous interactive sessions

like web navigation, remote administration, and instant messagging

Our study focuses on low latency anonymous networks. The state of art for
this type of networks is described in TOR [4], but some questions and problems
1 This work was partially supported by the Italian FIRB-Perf project. The authors

wish to thank Michele Mazzucchi for his help in proofreading the text.



are left open. In this paper, we examine these open issues and propose a new
architecture, named Sabbia (“sand” in Italian), which aims to solve them.

In anonymous networks, each of the peers must offer its own address as a
temporary “shield” to other participants. One of the unique characteristics of
Sabbia is the ability, for each peer in the network, to choose exactly how much
bandwidth it is willing to donate for this purpose. In addition, Sabbia’s design
has been heavily influenced by social network studies [5], trying to emulate some
charateristics of the social network which can help in optimizing the anonymous
network. Usually, the number of hops is proportional to the security of the net-
work, and thus also proportional to the loss of perfomance: Sabbia uses social
networks concepts in order to minimize the length of the anonymous path to
reach a specific destination.

The paper is organized as follows: in Section 2 we analyze related works,
in particula TOR. We describe both the benefits that this architecture brings,
and the questions left open in TOR design. In Section 3 we analyze end user
and developer requirements, in order to design a protocol which is both easy to
implement and to use. We analyze usability, required features, underlying design
assumptions, security and considerations about the extensibility of our design. In
Section 4 we describe the network architecture and show how it has been inspired
by natural networks. In Section 5 we describe the architecture of the Sabbia
protocol, providing multilayer anonymity and safe forwarding with optimized
path discovery. In Section 6 we analyze known active and passive attacks, and
show how the Sabbia protocol protects the user against them. Finally, in Section
7 we draw some conclusions and outline our future work on the subject.

2 Related Work and open questions

The concept of data anonimization through cryptography and forwarding was
originally introduced by Chaum [6]. His work laid out the foundation of anony-
mous remailer technology, the most stable anonymization technoloy deployed on
the Internet: they hide the relationship between sender and recipient by wrap-
ping messages in multiple layers of public-key cryptography, and delivering them
through a path of relays (mixes) which, in turn, decrypt, delay, and re-order
messages before relaying them. After his original work, two newer generations
of remailers ensued: Mixmaster [2] and later Mixminion [1], the latter being the
state of the art technology in use nowadays.

The first pseudo-anonymous remailer (known by its hostname as “anon.penet.fi”)
simply stripped headers and user informations from e-mails, remailing them
and waiting for an answer to send back to the user. In a similar way, the first
low-latency anonymous network available was a single hop anonymizing proxy:
Anonymizer. These systems shared the same defect: an attacker able to see in-
coming and outgoing traffic would be able to correlate requests with the sources.
This is called a passive attack because the attacker just needs to observe the traf-
fic, as opposed to active attacks, where the attacker needs to be able to mangle
traffic inside the network.



As we said, e-mail anonymizers use multiple layers of public key encription to
avoid traffing interception and the insertion of potentially untrusted mixes into
the path, and introduce large, variable forwarding delays to avoid traffic cor-
relation attacks. These techniques make high-latency system solidly safe. How-
ever, low-latency systems can not deploy such techniques, because they require
a bidirectional, interactive exchange of data. They are consequently vulnerable
to various types of attacks.

JAP, the Java Anon Proxy, which uses an encrypted chain forwarding hop and
fake payload adding, is vulnerable to passive and active attacks exposed in [7].
The same paper finds out PipeNet [8] to be vulnerabile to a catastrophic Denial
of Service attack. The authors propose then a modification of the forwarding
techniques in order to twarth the attacks they detected.

Distributed-trust, circuit-based anonymizing systems are more complex. In
these designs, a user establishes one or more bidirectional circuits, and tunnels
data in fixed-size cells. Circuits are tipically established through public-key cryp-
tography, whereas cells are transmitted using symmetric encryption. Because a
circuit crosses several servers, and each server only knows the adjacent servers
in the circuit, no single server can link a user to her communication partners.

Tarzan [9] and MorphMix [10] are peer-to-peer networks, where participants
both generate and relay traffic for others, in order to hide who actually generated
traffic as opposed to simply relayed it. This is a good solution, even if not perfect,
however it requires peers to offer their bandwidth to others, and if not limited
in some way, this could quickly saturate the link of a peer with unwanted traffic.

Cebolla [11] and Rennhard’s Anonymity Network [12] use instead a layered
“onion” of public-key encrypted messages, each layer of which provides session
keys and the address of the next server in the circuit. But as it was shown in [13]
both peer-to-peer and onion networks share the vulnerable concept of a “chain”
of servers, and a passive attacks on an anonymous chain may reveal the original
sender of an anonymous connection, even if it is rebuilt and reencryptet each
time in random ways inside the network.

Low-latency anonymous networks have thus been shown to be vulnerable
to passive and active attacks. Attacks of the former kind can be carried out
by correlating the startpoint of the network and the target anonymous session.
Traffic correlation could seem difficult to perform on compressed, splitted and
padded traffic. However, correlation between bandwidth peaks and interarrival
times between peaks would still be possible. For example an attacker could eas-
ily correlate timings and volumes of the traffic entering the anonymous network
with those leaving it, whenever it can eavesdrop on both the ends of the com-
munication [14].

On the other hand, active attacks work by simply disrupting packets and
tracking which session gets delayed, or even by inserting specific patterns in an
answer and trying to detect which anonymized session gets disrupted or altered,
thus effectively backtracking the traffic to its source. Similarly, an adversary
could inject timing patterns (or traffic with other discernible features) into the
traffic entering the network and looks for corresponding patterns among exiting



traffic. This does not always require enormous power on the attacker side. For
instance, on IIP (Invisibile IRC Protocol) an attacker can perform such an attack
by simply using a client connected to the IRC network and communicating, with
a fixed time/size pattern, with the anonymous user he wants to trace.

While solutions to these problems have been under development for some
time, we notice that a large part of the current systems address better the first
class of problems rather than the second.

The state of the art in low-latency network design is TOR [4]. While it solves
a number of problems, it leaves four issues open:

– It lacks the added reliability of a peer-to-peer design, which protects against
server instability

– It does not completely protect against end-to-end attacks based on traffic
timing, size and pattern correlation

– It lacks protocol normalization, thus allowing an attacker to detect differ-
ences in protocol handling between various clients

– It lacks a steganographic approach, to hide any difference in the anonymous
channel usage, wether or not an incoming or outgoing anonymous session is
present

3 Sabbia: end goals and requirements analysis

While designing Sabbia, we assumed an adversary who is able to read and to
write arbitrary traffic on each point of the Internet, who can install modified
Sabbia nodes and offer them as forwarding peers, and memorize unlimited traffic
with access to huge computational power to analyze it.

The main requirements we set for Sabbia are:

Deployability: the Sabbia protocol does not require administrative access on
the host in order to be deployed

Stability of bandwidth requirement: Sabbia requires equires the user to set
the maximum bidirectional bandwidth he desires to volunteer to the anony-
mous link (for connections both initiated or received by the user). Safeguards
are built into the protocol to avoid that this amount of “offered” bandwidth
is shaped or otherwise delayed. This limitation also avoids traffic peaks and
bursts due to flood or abuse of bandwidth due to large downloads. Overall,
a low-medium bandwidth offer (2kb/sec - 8kb/sec) is enough for low latency
applications such as instant messaging, web browsing, email sending, while
it avoids typical abuses such as the download of vast amounts of copyright
protected material

Protocol normalization: HTTP, IRC, E-mail transfer and other application
protocols contain information related with the client and its operating sys-
tem, allowing fingerprinting. On “specialized” anonymous relays such as an
anonymous remailer, sensitive information relative to the original sender can
be stripped because the protocol is known a priori; on this type of network,
we need an application layer dissector, able to find sensitive communication
fields, and to change them with the endpoint fields.



Simulated Steganography: steganography [15] usually is meant as concealing
information into other information; in Sabbia, we use a concept we call “sim-
ulated steganography”, by which we mean we force the network to present
always the same communication pattern, thus avoiding observers to detect
the presence or absence of anonymous traffic

Secure against end-to-end attack: Sabbia is designed to be resistant against
correlation even if an attacker creates a number of malicious nodes inside
the network, since its security is not based on a simple forwarding chain

Secure against passive attacks: Sabbia is studied to be proof against a cor-
relation attack brought by the all-powerful attacker we assumed, because all
peers produce continuously the same traffic patterns, eluding most passive
attacks

Secure against active attacks: Sabbia is also studied to be secure under ac-
tive attacks brought by the same attacker; an emulation engine at the appli-
cation layer allows to automatically manage sessions in case the anonymous
peer is delayed or otherwise disturbed by the attacker in order to cause an
interruption which can be correlated

Exit policy and traffic selection for endpoint user: the user can set an
“exit policy” for traffic outgoing from its node, which is trasmitted along
with the key and the network information to the other peers, in order to
allow them to route fastly traffic to a peer which is near to the connection
destination and which allows the required service in outgoing traffic

Best of both worlds: Sabbia tries to achieve the best features of both chain-
based networks and peer-to-peer networks; the former are strongly secure
against infiltration of malicious peers, while the latter supports dynamic,
short-lived peers in the network. The drawback is that in a peer-to-peer
structure an adversary could be running a large part of the peers for analysis
and tracking pourposes. On the other hand, a safe and long chain causes
a great loss of performance. Sabbia mixes a trusted forwarder chain with
random peers, in order to keep the chain short but still safe, and introducing
a trusting mechanism between peers via public key signatures

4 Sabbia network structure

4.1 Trust mechanism

Sabbia bases its network and its trust mechanisms on concepts drawn from the
study of natural networks [5]. Figure 1 shows how a generic network of Sabbia
nodes could be interconnected.

Sabbia does not require a strong trust mechanism in order to work, but being
able to reach a trusted entrypoint increses performance and security. The trust
mechanism we chose is a simple mechanism based on key signing, in a very
similar way to the PGP/GPG “web-of-trust” concept for certifying keys [16].

Sabbia uses the PGP keyservers to store the node keys, which enable clients
to upload public keys, add signatures to keys and retrieve the signature list. The
owner of the node can, if he wants to, sign with his own key the node public



1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. A Typical Sabbia Network

key, thus linking the trust network of Sabbia with the personal trust network
of PGP. All the keys share a common keyword, thus making search simple and
enabling the client to download all of them in a bulk (hiding which is the key
we are really looking for). They also present a unique ID not directly linked to
the user who generated them.

Once the keys have been obtained, it is straightforward to build a trust net-
work, where the “distance” between nodes (the number of trusted introductions
needed to recognize a key) is an inverse index of trustability (i.e. a node distant
2 is inherently less trustworthy than a node distant 1, which has been directly
recognized by the user). The user himself can fixate how much he will trust other
nodes, depending on this distance. This process can become totally automated
and transparent, or the user can choose to decide case by case wether or not he
trusts a particular key.

4.2 Small world effect

The anonymous network created by Sabbia is not uniformly spread over the
network. Local or national interest groups on privacy technology diffusion, close
communities of friends interested in this technology, and collaborative peers in
privacy-sensitive work environments cause anonymous network to show a “small
world” effect, which makes a totally random choice of the chain of forwarders
suboptimal for performance purposes. However, since none of these effects is
linked to network access choices, it is likely that the distribution of such nodes
between different autonomous systems and ISPs will be more or less random,
which means that the larger an ISP is, the most likely it is to find a trusted node
already operating inside its domain.

Sabbia tries to leverage the small world effect, connecting nearby pears to-
gether through a central point called Central Peer (CP). Usually, this will be
the peer with the best bandwidth offer and uptime, and can be auto-elected or
chosen by others as a trusted peer. Endpoint peers (EP) therefore can connect



Continuos payload

Queue manager

Anomaly detector

Packet encryption

Key manager

Dissimulation engine

Exit policy

Socket wrapper

IPC

Application wrapper

Sabbia deamon

anonymous link

plain anonymous 
sessions

IPCProtocol dissector

Fig. 2. Design of Sabbia: Daemon Layers and Application Wrapper

to the network using a stable, trusted peer which they also have a good con-
nection to. Each CP stores and forwards to other CPs informations on the EPs
connected to it (network information, public key and exit policy), hiding their
IP addresses and assigning them an anonymous ID for reference. Each node can
become a CP, and in fact a node could be contemporaneously in both roles for
different neighborhoods. Except for network organization purposes, CP and EP
nodes can perform the same operations.

Routing operations are also mediated by CPs. In order to route efficiently,
besides the information on trust transmitted through key exchange nodes must
take into account throughput and latency values. It is plain that in a virtual
network such as Sabbia a multiple-hop path could be much more convenient
than a single-hop, high-latency one, providing a better latency-anonimity trade-
off. Thus, CPs must also store and forward transmission statistics (bandwidth,
latency, packet loss) of nodes connected besides them.

5 Application Architecture

Sabbia has a multilayer application architecture, as shown in Figure 5. Basically,
the daemon is a software component which must always run while connected to
the Sabbia network, and manages user anonymization and handles sessions from
anonymous users received while working as a relay. The application wrapper
component instead is activated whenever the user wants to anonymize a session.

5.1 The Application Wrapper

The Sabbia Application Wrapper (SAW) wraps all the system calls related to
network communications (which is easy to implement and port in most common
operating systems, through the concept of shared libraries and redirection). In



this way, it makes transparent for the applications the use of the Sabbia anony-
mous network, while it forwards to the daemon any connection request and/or
application data, and passes back to the application any answer.

This also solves a simple but common problem, the fact that usually anony-
mous network do not conceal DNS requests. Wrapping the name resolution re-
quests to the operating system makes SAW able to use the anonymous network
for name resolution, hiding the anonymous session better.

Wrapping sessions directly is important for the Sabbia protocol, which thus
interacts poorly with other technologies that already incapsulate sessions (for in-
stance, VPN tunnels) under both the performance and the security profile. Per-
formance decreases because re-encapsulating an encapsulated TCP connection
causes an higher packet loss and possibly fragmentation due to MSS restriction.
Security is impacted because Sabbia cannot anonymize the upper layer protocols
in the encrypted link.

5.2 The Sabbia Daemon

The Sabbia deamon (SaD) is the core application which handles incoming and
outgoing anonymous sessions. As shown in Figure 5 the daemon is structured in
a multilayer fashion and sits between applications (requesting network commu-
nication through the wrapper), and the operating system, which will ultimately
send data over the network.

Let us consider the various components of SaD, beginning from the one closer
to the network stack: the Continuous Payload Generator. As we said, we
want that any peer always generates the same amount of traffic (“simulated
steganography”). Once the bandwidth has been fixated by the user, it can be
divided into equally sized, equally spaced packets; e.g if the bandwidth is 4
kb/sec, SaD can send three packets each second, each with 1365 bytes of data.
This will constantly happen, bidirectionally, no matter what happens on the
anonymous network. If the link is unused, packets contain just padding. If the
link is used, part of the padding is substituted with encrypted data. There is no
way, for an external observer, to infer the switch from one state to the other, no
signalling happens between the peers.

We use UDP for this fixed-size transmissions. Inside the payload, a Sabbia
Header (SH) is present, containing the following transmission control fields:

Random Value: a nonce used for freshness in encryption, due to the use of an
ECB mode as opposed to classical CBC mode (see below)

Checksum: an encrypted parity check, used to understand if the packet has
been tampered with

Incremental Counter: each packet is numbered to avoid replications and to
detect packet loss

Timestamp: timing the RTT between hops is needed both for routing purposes
and for intrusion detection purposes

Message length: used to discriminate between real data and padding. If 0, the
packet is fake



Since timing is so crucial, the safe-side decision is that when a packet can-
not be transmitted or encrypted safely at the precise time, SaD opts to send
a meaningless padding packet instead; also, precise safeguards are adopted to
avoid the packet sending to be delayed due to interactions with other software
components on the system.

Encryption is performed by the Packet Encryption Layer. Data compres-
sion is applied before encrypting, and the Sabbia Header is added. The random
nonce and the timestamp add entropy to the plaintext, which makes it safe to
use an ECB-mode algorithm. ECB is more resilient to packet loss, but requires
freshness in order to avoid well-known attacks (since identical plaintexts encrypt
to identical cyphertexts). We use the AES algorithm [17]. Obviously, the arbi-
trary division of the bandwidth in fixed payload sizes has to be adjusted in order
to be divisible with the encryption block size of AES.

A shared session key is exchanged between the peers using public key en-
cryption, and is changed after a random number of packets, chosen by the peers.
In order to explain how the key exchange system works, let us consider how an
EP would encrypt a connection. Obviously, to enter the Sabbia network, it has
connected with a CP and has established a bidirectional link with it, exchanging
a shared encryption key using the CP public key. The protocol, however, be-
haves differently depending on the level of trust EP has in CP. If EP trusts CP,
it can send packets encrypted with the shared key to CP, and CP will receive
the packet, decrypt it and retrieve the real length of the message. If the lenght
is 0, the packet contains only random data and can be discarded, else the packet
contains some data and it is thus passed on for processing or forwarding.

If EP does not trust CP, however, we must take additional steps to protect
the communication. We need to find a trusted remote peer among the ones
connected to CP, let us call this trusted peer EP2. Obviously, we do not directly
know its address, but we know the ID which CP has assigned to it, and we have
routing information to choose a path (in the case we are collected to multiple
CPs announcing a route to that host). What we need to do, henceforth, is to
exchange a shared key with EP2, on the anonymous link relayed by CP. We send
the key exchange packet on the link, encrypting it with the key we share with
CP. The CP decrypts the external layer, but it only learns who is the intended
recipient and nothing more. It will then relay the key exchange session to the
recipient. Once a shared key has been negotiated between EP and EP2, CP will
act as a simple message passer, since it cannot decrypt packets anymore. This has
the drawback that CP is also forced to forward random padding packets, which
could saturate its links and activate the policy manager, making our session lose
priority.

The Intrusion Detection Layer makes use of the timestamps in order to
verify routing problems, congestions and possible tampering on the network.
This helps prevent active attacks where an adversary tries to slow down the link
between two anonymous peer for correlating and backtracing the sessions being
anonymized on that link. This is not just impossible to avoid, but also really
difficult to detect. But Sabbia, thanks to this layer, can detect these malfunc-



tionings. It then tries to understand wether they are natural or induced by an
attacker. If an attack is detected, the “dissimulation engine” is invoked and the
user is notified that someone is tampering with his link.

The Key Manager is a utility layer which supports key selection, parsing
and signature checks in order to manage received public keys. It builds the trust
network and manages key exchange, rotation and recomputation, handing out to
the Packet Encryption Layer all the information they require in order to perform
cryptography operations.

The Queue Manager performs the strong traffic shaping required by Sabbia
in order to preserve the exact timing of packet sending. It collects traffic incoming
from the anonymous link which must be forwarded (either encrypted or in plain
text, depending on wether the remote host trusted us or not), and outbound
data coming from the local machine. The Queue Manager assign priorities to
the traffic trying to optimize performance. A simple policy is to give top priority
to highly interactive protocols like SSH or Telnet, and to penalize Web browsing
and other bulk transfer protocols. On the top of this we can grant higher priority
to sessions initiated by the user as opposed to forwarded sessions, and further
penalize continuous encrypted sessions resulting from an EP not trusting the
CP.

The Protocol Dissector is an intermediate layer which receives the incom-
ing sessions, and acts as an application layer proxy, i.e. it receives commands
and transmits them, and then relays back the answers. This is useful because in
this way the exit point can relay the commands to the final destination and then
send back the answers without caring about the application protocol, atomic-
ity is preserved and performance on the anonymous link is optimized. Also, by
caching the transactions for a fixed amount of time the peers can retransmit
data lost on the anonymous link without making a new request to the external
server. In addition, Protocol Dissector strips fingerprinting information, e.g. Mail
Tranport Agent headers, HTTP User Agent, and such, substituting them with
anonymous alternatives. Since the Protocol Dissector must be easily extendible,
it has been implemented as a series of external plug-in modules which can be
loaded on request.

The Exit Policy Checker verifies the constraints set by the user on the
allowable outgoing protocols from its node. In this way a user can avoid to
become the unwilling relay of attacks, or to allow unlawful or morally debatable
content flowing through his system.

The Dissimulation Engine is a defensive segment which can be evoked by
the Intrusion Detection Layer. The engine tries to emulate the presence of a user
behind an anonymous session which is being maliciously slowed down or blocked,
in order to avoid active attacks which try to correlate the link disruption with
an interruption in the anonymous session.

In order to work, the Engine needs access to application layer data, thus
it can work only over protocols that are supported by the Protocol Dissector.
The actual evasive action depends heavily on the application: for instance, let
us consider an IRC session. While it is perfectly normal for a user to be idle, it



is anomalous for him not to answer PING requests from the server. Thus, the
Dissimulation Engine will in this case answer to PING on behalf of the client.
An HTTP session could be emulated requesting some random link using the
last URL as the HTTP Referral. These dissimulative actions could be refined
further, but they are in fact enough to make an active attack not automatically
executable. It would still be difficult to fool an human observer.

6 Sabbia against active and passive attacks

In this section we recapitulate how Sabbia protects the user agains known attacks
against low latency anonymous networks. The first layer of protection is provided
by the joint use of the Application Wrapper and the Protocol Dissector: this
allows to get rid of application-dependent fields which could allow an attacker
to use passive identification. Since Sabbia avoids to use the OS TCP/IP stack
during encapsulation, this side channel is also avoided.

The Continuous Padding Generator, along with the Packet Encryption Layer,
protects Sabbia against passive correlation attacks, making an attacker unable to
distinguish between the real presence of traffic. In addition, only “trusted” hops
(verified with sound public-key signatures) can see the real passage of traffic,
the others will always see the same apparently random traffic. The presence of
the nonce, sequence number and timestamp avoids active replay attacks from
inside or outside the network. The encrypted checksum protects against active
bit-flipping attacks. Freshness grants that traditional attacks against ECB mode
cannot work.

The Intrusion Detection Layer can detect active attacks such as the two out-
lined above, and also those based on traffic shaping and blocking, since the exact
timing of packet transmission causes the detection of any network malfunction-
ing, whether incidental or hostile. The Dissimulation Engine can then take over
and provide an emulation of user activity over a disrupted link. Obviously, we
still cannot prevent an adversary running a Sabbia peer to maliciously disrupt
communications inside the network, but we can avoid him to use this disruption
to correlate anonymous sessions.

7 Conclusions

This paper offers an overview of the design of Sabbia. Sabbia is intended as a
proof-of-concept implementation of a set of guidelines and improvements over
state-of-the-art protocol, rather then a full fledge production protocol. We believe
that these guidelines define a winning approach to the problem of low-latency
anonymous networks. The Sabbia network aims to develop trust-based relation-
ships and optimized paths. The security of the Sabbia protocol against passive
and active attacks has been discussed. So far, Sabbia turned out to resist to all
of the attacks we outlined in this paper.

Future extensions of this work will analyze the prototype in order to opti-
mize the performance of networks based on continuous padding and to study how



to optimally determine size, frequency and randomic variation of their padding
packets. Further optimizations to the bandwith usage could be achieved by di-
minishing the usage of random traffic, transmitting useful data along, or using
a randomly variable bandwidth instead of a fixed bandwidth. A possible future
extension could allow for an Intrusion Detection System to be plugged into the
Exit Policy Checker, in order to allow the user more granularity in defining
unacceptable requests and attacks to be dropped.

References

1. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
type III anonymous remailer protocol. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy, May 2003.

2. Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol
— Version 2. Draft, July 2003.

3. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
a distributed anonymous information storage and retrieval system. In Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

4. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

5. M. Buchanan. Small World: Uncovering Nature s hidden net- works. Weidenfeld
& Micolson, London, 2002.

6. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

7. Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis attacks and trade-
offs in anonymity providing systems. In Ira S. Moskowitz, editor, Proceedings of
Information Hiding Workshop (IH 2001), pages 245–257. Springer-Verlag, LNCS
2137, April 2001.

8. Wei Dai. Pipenet 1.1. Usenet post, August 1996.
9. Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing

network layer. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security (CCS 2002), Washington, DC, November 2002.

10. Marc Rennhard and Bernhard Plattner. Practical anonymity for the masses with
morphmix. In Ari Juels, editor, Proceedings of Financial Cryptography (FC ’04).
Springer-Verlag, LNCS 3110, February 2004.

11. Zach Brown. Cebolla: Pragmatic IP Anonymity. In Proceedings of the 2002 Ottawa
Linux Symposium, June 2002.

12. M. Rennhard, S. Rafaeli, L. Mathy, B. Plattner, and D. Hutchison. Analysis of an
anonymity network for web browsing. In IEEE 7th Intl. Workshop on Enterprise
Security (WET ICE 2002), June 2002.

13. Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In Fabien Petitcolas, editor, Proceedings of
Information Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October
2002.

14. A. Serjantov and P. Sewell. Passive attack analysis for connection-based anonymity
systems. In Computer Security - ESORICS 2003, LNCS 2808. Springer-Verlag,
October 2003.



15. Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Information
hiding — A survey. Proceedings of the IEEE, 87(7):1062–1078, 1999.

16. S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc., 1995.
17. William Stallings. The advanced encryption standard. Cryptologia, XXVI(3):165–

188, 2002.


