
Politecnico di Milano
Dip. Elettronica e Informazione

Milano, Italy

Detecting 0-day attacks with
Learning Intrusion Detection System

Stefano ZaneroStefano Zanero
Ph.D. Student, Politecnico di Milano

CTO & Founder, Secure Network S.r.l.

Black Hat Briefings – Las Vegas, 29/07/2004

Presentation Outline

 Information Warfare rules of engagement
 Building a case for Intrusion Detection Systems
 Intrusion Detection Systems, not Software !
 Why do we need Anomaly Detection ?
 State of the art
 Learning algorithms, patterns, outliers
 Detecting 0-day attacks: hope or hype ?
 Conclusions

Parallel landscapes: physical vs. digital

 A discomforting parallel between physical and digital
security

 Since 9/11/2001 we are building impressive defensive
fortifications
 Cost
 Distraction
 Annoyance

 Are we more secure today than we were three years
ago ? Does not seem so
 The defender needs to plan for everything… the attacker needs

just to hit one weak point
 King Darius vs. Alexander Magnus, at Gaugamela (331 b.C.)

 Why are we failing? Because in most cases we are not
acting sensibly

 “Beyond fear”, by Bruce Schneier: a must read!

Information Security Engagement rules

 We cannot really defend against everything… but
we can behave sensibly:
 We can try to display defenses in the most vulnerable

areas (deterrence)
 We can try to protect the systems, designing them to

be secure (prevention)
 At the end of the day, we must keep in mind that

every defensive system will, at some time, fail,
so we must plan for failure
 We must design systems to withstand attacks, and fail

gracefully (failure-tolerance)
 We must design systems to be tamper evident

(detection)
 We must design systems to be capable of recovery

(reaction)

Murphy’s law on systems

 The only difference between systems that can
fail and systems that cannot possibly fail is that,
when the latter actually fail, they fail in a totally
devastating and unforeseen manner that is
usually also impossible to repair

 The mantra is: plan for the worst (and pray it
will not get even worse than that) and act
accordingly

Tamper evidence and Intrusion Detection

 An information system must be designed for
tamper evidence (because it will be broken into,
sooner or later)

 An IDS is a system which is capable of detecting
intrusion attempts on an information system
 An IDS is a system, not a software!
 An IDS works on an information system, not on a

network!

 The so-called IDS software packages are a
component of an intrusion detection system

 An IDS system usually closes its loop on a
human being (who is an essential part of the
system)

Breaking some hard-to-kill myths

 An IDS is a system, not a software
A skilled human looking at logs is an IDS
A skilled network admin looking at TCPdump is an IDS
A company maintaining and monitoring your firewall is
an IDS
A box bought by a vendor and plugged into the
network is not an IDS by itself

 An IDS is not a panacea, it’s a component
Does not substitute a firewall, nor it was designed to
(despite what Gartner thinks)
It’s the last component to add to a security
architecture, not the first

 Detection without reaction is a no-no
Like burglar alarms with no guards!

 Reaction without human supervision is a dream
 “Network, defend thyself !”

Terminology and taxonomies

 Different types of software involved in IDS
Logging and auditing systems
Correlation systems
So-called “IDS” software
Honeypots / honeytokens

 The logic behind an IDS is always the same:
those who access a system for illegal purposes
act differently than normal users

 Two main detection methods:
Anomaly Detection: we try to describe what is normal,
and flag as anomalous anything else
Misuse Detection: we try to describe the attacks, and
flag them directly

Anomaly vs. misuse

 Describes normal behaviour,
and flags deviations

 Uses statistical or machine
learning models of behaviour

 Theoretically able to
recognize any attack, also 0-
days

 Strongly dependent on the
model, the metrics and the
thresholds

 Generates statistical alerts:
“Something’s wrong”

 Uses a knowledge base to
recognize the attacks

 Can recognize only attacks for
which a “signature” exists in
the KB

 When new types of attacks are
created, the language used to
express the rules may not be
expressive enough

 Problems for polymorphism
 The alerts are precise: they

recognize a specific attack,
giving out many useful
informations

Anomaly Detection Model Misuse Detection Model

Misuse detection alone is an awful idea

 Misuse detection systems rely on a knowledge base (think
of the anti-virus example, if it’s easier to grasp)

 Updates continuously needed, and not all the attacks
become known (as opposed to viruses)
A misuse based IDS will not, in general, recognize a
zero-day attack

 Attacks are polymorphs, more than computer viruses
(human ingenuity vs computer program)
Think of ADMutate, UTF encoding...
A misuse based IDS will not, in general, recognize a new way
to exploit an old attack, unless there is an unescapably
necessary characteristic in the attack

 If we need intrusion detection as a complementary mean
to patching and secure design, detecting known attacks
is clearly not the solution

Anomaly Detection, perhaps not better

 Task: describe the normal behaviour of a system
Which features/variables/metrics would you use?
Infinite models to fit them

 Thresholds must be chosen to minimize false
positive vs. detection rate: a difficult process

 The base model is fundamental
If the attack shows up only in variables we discarded,
or only in variations we do not check, we cannot detect
it
Think of detecting oscillations when you just check the
average of a variable on a window of time

 In any case, what we get as an alert is “hey,
something’s wrong here”. What? Your guess!

 No automatic defense, not reliable enough for
IPS applications

Our approach: unsupervised learning

 At the Politecnico di Milano Performance Evaluation lab we
are working on a network-based, anomaly-based intrusion
detection system capable of unsupervised learning

 What is a learning algorithm ?
It is an algorithm whose performances grow over time
It can extract information from training data

 Supervised algorithms learn on labeled training data
“This is a good packet, this is not good”
Think of your favorite bayesian anti-spam filter
It is a form of generalized misuse detection, more flexible than
signatures
Widely studied in literature

 Unsupervised algorithms learn on unlabeled data
They can “learn” the normal behavior of a system and detect
variations (remembers something … ?)
How can they be employed on networks?

Unsupervised Learning Algorithms

 What are they used for:
Find natural groupings of X (X = human languages,
stocks, gene sequences, animal species,…) in order to
discovery hidden underlying properties
Summarize <data> for the past <time> in a visually
helpful manner
Sequence extrapolation: predict cancer incidence in
next decade; predict rise in antibiotic-resistant bacteria

 A general overview of methods:
Clustering (“grouping” of data)
Novelty detection (“meaningful” outliers)
Trend detection (extrapolation from multivariate
partial derivatives)
Time series learning
Association rule discovery

What is clustering ?

 Clustering is the grouping of pattern vectors into
sets that maximize the intra-cluster similarity,
while minimizing the inter-cluster similarity

 What is a pattern vector (tuple)?
A set of measurements or attributes related to an
event or object of interest:
 E.g. a persons credit parameters, a pixel in a multi-
spectral image, or a TCP/IP packet header fields

 What is similarity?
Two points are similar if they are “close”

 How is “distance” measured?
Euclidean
Manhattan
Matching Percentage

An example: K-Means clustering

Seeds

Predetermined
number of clusters

Start with seed
clusters of one
element

Assign Instances to Clusters

Find the new centroids

Recalculate clusters on new centroids

Which Clustering Method to Use?

 There are a number of clustering algorithms, K-means is
just one of the easiest to grasp

 How do we choose the proper clustering algorithm for a
task ?
Do we have a preconceived notion of how many clusters there
should be?

 K-means works well only if we know K
 Other algorithms are more robust

How strict do we want to be?
 Can a sample be in multiple clusters ?
 Hard or soft boundaries between clusters

How well does the algorithm perform and scale up to a number
of dimensions ?

 The last question is important, because data miners work
in an offline environment, but we need speed!
Actually, we need speed in classification, but we can afford a
rather long training

Outlier detection

 What is an outlier ?
It’s an observation that deviates so much from other
observations as to arouse suspicions that it was
generated from a different mechanism

 If our observations are packets… attacks
probably are outliers
If they are not, it’s the end of the game for
unsupervised learning in intrusion detection

 There is a number of algorithms for outlier
detection

 We will see that, indeed, many attacks are
outliers

Multivariate time series learning

 A time series is a sequence of observations on a
variable made over some time

 A multivariate time series is a sequence of
vectors of observations on multiple variables

 If a packet is a vector, then a packet flow is a
multivariate time series

 What is an outlier in a time series ?
Traditional definitions are based on wavelet transforms
but are often not adequate

 Clustering time series might also be an approach
We can transform time series into a sequence of
vectors by mapping them on a rolling window

Mapping time series onto vectors

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

T
IM

E

2 2 21 1 1

1 1 1

3 3 32 2 2

4 4 43 3 3

5 5 54 4 4

Association Rule Discovery

 The objective is to find rules that associate sets
of events. E.g. X & Y=> Z

 We use 2 evaluation criteria:
Support (frequency): probability that an observation
contains {X & Y & Z}
Confidence (accuracy): the conditional probability that
an observation having {X & Y} also contains Z

 Used both in supervised and unsupervised
manners

 Example: ADAM, Audit Data Analysis and Mining
(supervised)

Selecting features

 Most learning algorithms do not scale well with
the growth of irrelevant features
Training time to convergence may grow exponentially
Detection rate falls dramatically, from our experiments

 Computational efficiency gets lower when
coordinates are higher
Some algorithms simply couldn’t handle too many
dimensions in our tests

 Structure of data gets obscured with large
amounts of irrelevant coordinates
We experimented, and throwing everything in is just
awfully wrong…

 Run-time of the (already trained) inference
engine on new test examples also grows

A hard problem, then…

 A network packet carries an unstructured
payload of data of varying dimension

 Learning algorithms like structured data of fixed
dimension since they are vectorized

 A common solution approach was to discard the
packet contents. Unsatisfying because many
attacks are right there.

 We used two layers of algorithms, prepending a
clustering algorithm to another learning
algorithm

 Published in S. Zanero, S. M. Savaresi,
“Unsupervised Learning Techniques for an
Intrusion Detection System”, Proc. of the 2004
ACM symposium on Applied computing, Nicosia,
Cyprus

The overall architecture of the IDS

Header Payload
IP TCP

Decoding Clustering

+

S
e
co

n
d

 S
ta

g
e

Correlation on a
rolling window of
normalized packets

First stage

An example of clustering results

 Left: clustering of TCP packets from a testbed network in
100 classes (Self Organizing Map algorithm, euclidean)

 Right: the classification of packets with DST_PORT 21
 As you can see, they are very well characterized: the

algorithm can learn the structure of FTP command
channel communications

Classes Classes

P
a
ck

e
ts

P
a
ck

e
ts

Attack detection, polymorphism resistance

 Let’s pick as an example the “format string”
vulnerability against wu-ftpd FTP server (CVE
CAN-2000-0573)
We did NOT give to the system a sample of this attack
forehand (so it was a “zero-day” for the system)
The payload was classified in class 69, which is not
commonly associated with FTP packets
Port 21 => class 69 is an outlier, and is detected

 We also analyzed the globbing DoS attack,
It is inherently polymorph; the only way to build a
signature for it is to match /* (and thus generate a
flood of false positives)
The SOM classified a number of variants of the attack
in the same class (97), which is also an outlier on port
21

Unsupervised learning at the second tier

 We are still experimenting with candidate
algorithms for second tier learning

 Basically, any of the (not many) proposed
algorithms found in the literature can be
complemented by our clustering tier

 Our first results show that applying the
additional stage can extend the range of
detected attacks, improving average detection
rate by as much as 75% over previous work

 False positive rate is also affected, obviously, but
we are working to lower it

Conclusions & Future Work

 Conclusions:
IDS are going to be needed as a complementary

defense paradigm (detection & reaction vs.
prevention)

In order to detect unknown attacks, we need better
anomaly detection systems

We can use unsupervised learning for anomaly
detection

Clustering TCP payloads yields meaningful results
The two-tier architecture dramatically improves the

performance of existing unsupervised IDS systems
 Future developments:

We are evaluating the best algorithm for second stage
We are studying signal-to-noise ratio and false positive

reduction techniques
We are integrating our system in the architecture of

Snort as a plugin
We have integrated it in the architecture of STAT

?Any question?Any question?

Thank you!Thank you!

I would greatly appreciate your feedback !

Stefano Zanero
zanero@elet.polimi.it

www.elet.polimi.it/upload/zanero/eng

